En
快捷导航

南科大医学院
官方公众号

喻德阳

助理教授

yudy@sustech.edu

进入个人主页 返回到教师列表

个人简介

喻德阳,南方科技大学医学院生物化学系助理教授、副研究员、博士生导师。2011年毕业于武汉大学预防医学专业;2012年9月至2019年8月于美国威斯康星大学麦迪逊分校获博士学位;2019年9月至2020年8月留校继续博士后研究;2020年9月至2025年11月在哈佛大学医学院/丹娜法伯癌症研究所从事博士后研究;2025年12月加入南方科技大学医学院。研究方向聚焦于氨基酸代谢在生理与病理过程中的作用,重点探索其在肥胖、癌症、细胞死亡及炎症中的调控机制。在氨基酸代谢调控肥胖与癌症领域取得系列成果,近年来以第一作者在Cell Metabolism、Cell Reports、The FASEB Journal等期刊发表SCI论文20余篇。曾获2017年美国心脏协会(AHA)博士前研究基金(Predoctoral Fellowship)及2022年美国癌症研究协会(AACR)博士后研究基金(Postdoctoral Fellowship)。

研究领域

1. 氨基酸的代谢研究:(1)支链氨基酸代谢在肥胖和癌症等疾病中的生物学意义;(2)半胱氨酸的降解机制研究及其生物学意义

2. 细胞死亡通路和机制研究:(1)铁死亡的调节机制;(2)其他非经典死亡通路的机制研究

3. 炎症代谢研究: (1) 炎症调控代谢的机制研究; (2)氨基酸代谢在炎症发生中的作用

教育背景

2006-9~2011-6 武汉大学,预防医学,医学学士

2012-9~2019-8 威斯康星大学麦迪逊分校, 毒理学,博士

工作经历

2025-12~至今  南方科技大学医学院,助理教授

2020-9~2025-11哈佛医学院/丹娜—法伯癌症研究所,细胞生物学系,博士后研究员

2019-9~2020-8 威斯康星大学麦迪逊分校,医学系,博士后研究员

2011-7~2012-6 西藏自治区昌都市藏医院, 外科,住院医师

获奖情况及荣誉

2017-2018 美国心脏协会Predoctoral Fellowship

2022-2024 美国癌症研究协会Postdoctoral Fellowship

杂志编委会委员

杂志Frontiers in Medicine 和International Immunopharmacology审稿人

2013~2015 美国质谱学会,会员

2017~2018 美国心脏协会,会员

2022~2024 美国癌症研究协会,会员

近年代表文章

20.Liang, J., Vitale, T., Zhang, X., Jackson, T.D., Yu, D., Jedrychowski, M., Gygi, S.P., Widlund, H.R., Wucherpfennig, K.W., and Puigserver, P. (2025). Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity. Nat. Cancer, 1–15. https://doi.org/10.1038/s43018-024-00895-x.

19.Yu, D., Liang, J., Widlund, H.R., and Puigserver, P. (2024). Feedforward cysteine regulation maintains melanoma differentiation state and limits metastatic spread. Cell Rep. 43, 114484. https://doi.org/10.1016/j.celrep.2024.114484.

18.Mutlu, B., Sharabi, K., Sohn, J.H., Yuan, B., Latorre-Muro, P., Qin, X., Yook, J.-S., Lin, H., Yu, D., Camporez, J.P.G., et al. (2024). Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem. Biol. 31, 1772-1786.e5. https://doi.org/10.1016/j.chembiol.2024.09.001.

17.Flores, V., Spicer, A.B., Sonsalla, M.M., Richardson, N.E., Yu, D., Sheridan, G.E., Trautman, M.E., Babygirija, R., Cheng, E.P., Rojas, J.M., et al. (2023). Regulation of metabolic health by dietary histidine in mice. J. Physiol. 601, 2139–2163. https://doi.org/10.1113/JP283261.

16.Liang, J., Yu, D., Luo, C., Bennett, C., Jedrychowski, M., Gygi, S.P., Widlund, H.R., and Puigserver, P. (2023). Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat. Commun. 14, 3251. https://doi.org/10.1038/s41467-023-38968-7.

15.Green, C.L., Pak, H.H., Richardson, N.E., Flores, V., Yu, D., Tomasiewicz, J.L., Dumas, S.N., Kredell, K., Fan, J.W., Kirsh, C., et al. (2022). Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 34, 209-226.e5. https://doi.org/10.1016/j.cmet.2021.12.018.

14.Zhang, L., Hobeika, C.S., Khabibullin, D., Yu, D., Filippakis, H., Alchoueiry, M., Tang, Y., Lam, H.C., Tsvetkov, P., Georgiou, G., et al. (2022). Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc. Natl. Acad. Sci. U. S. A. 119, e2122840119. https://doi.org/10.1073/pnas.2122840119.

13.Yu, D., Richardson, N.E., Green, C.L., Spicer, A.B., Murphy, M.E., Flores, V., Jang, C., Kasza, I., Nikodemova, M., Wakai, M.H., et al. (2021). The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 33, 905-922.e6. https://doi.org/10.1016/j.cmet.2021.03.025.

12.Richardson, N.E., Konon, E.N., Schuster, H.S., Mitchell, A.T., Boyle, C., Rodgers, A.C., Finke, M., Haider, L.R., Yu, D., Flores, V., et al. (2021). Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat. Aging 1, 73–86. https://doi.org/10.1038/s43587-020-00006-2.

11.Bruckbauer, S.T., Minkoff, B.B., Yu, D., Cryns, V.L., Cox, M.M., and Sussman, M.R. (2020). Ionizing Radiation-induced Proteomic Oxidation in Escherichia coli. Mol. Cell. Proteomics MCP 19, 1375–1395. https://doi.org/10.1074/mcp.RA120.002092.

10.Haws, S.A., Yu, D., Ye, C., Wille, C.K., Nguyen, L.C., Krautkramer, K.A., Tomasiewicz, J.L., Yang, S.E., Miller, B.R., Liu, W.H., et al. (2020). Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol. Cell 78, 210-223.e8. https://doi.org/10.1016/j.molcel.2020.03.004.

9.Pak, H.H., Cummings, N.E., Green, C.L., Brinkman, J.A., Yu, D., Tomasiewicz, J.L., Yang, S.E., Boyle, C., Konon, E.N., Ong, I.M., et al. (2019). The Metabolic Response to a Low Amino Acid Diet is Independent of Diet-Induced Shifts in the Composition of the Gut Microbiome. Sci. Rep. 9, 67.  https://doi.org/10.1038/s41598-018-37177-3.

8.Yu, D., Tomasiewicz, J.L., Yang, S.E., Miller, B.R., Wakai, M.H., Sherman, D.S., Cummings, N.E., Baar, E.L., Brinkman, J.A., Syed, F.A., et al. (2019). Calorie-Restriction-Induced Insulin Sensitivity Is Mediated by Adipose mTORC2 and Not Required for Lifespan Extension. Cell Rep. 29, 236-248.e3. https://doi.org/10.1016/j.celrep.2019.08.084.

7.Schreiber, K.H., Arriola Apelo, S.I., Yu, D., Brinkman, J.A., Velarde, M.C., Syed, F.A., Liao, C.-Y., Baar, E.L., Carbajal, K.A., Sherman, D.S., et al. (2019). A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194. https://doi.org/10.1038/s41467-019-11174-0.

6.Yu, D., Yang, S.E., Miller, B.R., Wisinski, J.A., Sherman, D.S., Brinkman, J.A., Tomasiewicz, J.L., Cummings, N.E., Kimple, M.E., Cryns, V.L., et al. (2018). Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 32, 3471–3482. https://doi.org/10.1096/fj.201701211R.

5.Cummings, N.E., Williams, E.M., Kasza, I., Konon, E.N., Schaid, M.D., Schmidt, B.A., Poudel, C., Sherman, D.S., Yu, D., Arriola Apelo, S.I., et al. (2018). Restoration of metabolic health by decreased consumption of branched-chain amino acids. J. Physiol. 596, 623–645. https://doi.org/10.1113/JP275075.

4.Yu, D., Peng, Y., Ayaz-Guner, S., Gregorich, Z.R., and Ge, Y. (2016). Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 27, 220–232. https://doi.org/10.1007/s13361-015-1286-8.

3.Chang, Y.-H., Gregorich, Z.R., Chen, A.J., Hwang, L., Guner, H., Yu, D., Zhang, J., and Ge, Y. (2015). New mass-spectrometry-compatible degradable surfactant for tissue proteomics. J. Proteome Res. 14, 1587–1599. https://doi.org/10.1021/pr5012679.

2.Peng, Y., Ayaz-Guner, S., Yu, D., and Ge, Y. (2014). Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin. Appl. 8, 554–568. https://doi.org/10.1002/prca.201400043.

1.Peng, Y., Yu, D., Gregorich, Z., Chen, X., Beyer, A.M., Gutterman, D.D., and Ge, Y. (2013). In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J. Muscle Res. Cell Motil. 34, 199–210. https://doi.org/10.1007/s10974-013-9352-y.