喻德阳,南方科技大学医学院生物化学系助理教授、副研究员、博士生导师。2011年毕业于武汉大学预防医学专业;2012年9月至2019年8月于美国威斯康星大学麦迪逊分校获博士学位;2019年9月至2020年8月留校继续博士后研究;2020年9月至2025年11月在哈佛大学医学院/丹娜法伯癌症研究所从事博士后研究;2025年12月加入南方科技大学医学院。研究方向聚焦于氨基酸代谢在生理与病理过程中的作用,重点探索其在肥胖、癌症、细胞死亡及炎症中的调控机制。在氨基酸代谢调控肥胖与癌症领域取得系列成果,近年来以第一作者在Cell Metabolism、Cell Reports、The FASEB Journal等期刊发表SCI论文20余篇。曾获2017年美国心脏协会(AHA)博士前研究基金(Predoctoral Fellowship)及2022年美国癌症研究协会(AACR)博士后研究基金(Postdoctoral Fellowship)。
1. 氨基酸的代谢研究:(1)支链氨基酸代谢在肥胖和癌症等疾病中的生物学意义;(2)半胱氨酸的降解机制研究及其生物学意义
2. 细胞死亡通路和机制研究:(1)铁死亡的调节机制;(2)其他非经典死亡通路的机制研究
3. 炎症代谢研究: (1) 炎症调控代谢的机制研究; (2)氨基酸代谢在炎症发生中的作用
2006-9~2011-6 武汉大学,预防医学,医学学士
2012-9~2019-8 威斯康星大学麦迪逊分校, 毒理学,博士
2025-12~至今 南方科技大学医学院,助理教授
2020-9~2025-11哈佛医学院/丹娜—法伯癌症研究所,细胞生物学系,博士后研究员
2019-9~2020-8 威斯康星大学麦迪逊分校,医学系,博士后研究员
2011-7~2012-6 西藏自治区昌都市藏医院, 外科,住院医师
2017-2018 美国心脏协会Predoctoral Fellowship
2022-2024 美国癌症研究协会Postdoctoral Fellowship
杂志Frontiers in Medicine 和International Immunopharmacology审稿人
2013~2015 美国质谱学会,会员
2017~2018 美国心脏协会,会员
2022~2024 美国癌症研究协会,会员
20.Liang, J., Vitale, T., Zhang, X., Jackson, T.D., Yu, D., Jedrychowski, M., Gygi, S.P., Widlund, H.R., Wucherpfennig, K.W., and Puigserver, P. (2025). Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity. Nat. Cancer, 1–15. https://doi.org/10.1038/s43018-024-00895-x.
19.Yu, D., Liang, J., Widlund, H.R., and Puigserver, P. (2024). Feedforward cysteine regulation maintains melanoma differentiation state and limits metastatic spread. Cell Rep. 43, 114484. https://doi.org/10.1016/j.celrep.2024.114484.
18.Mutlu, B., Sharabi, K., Sohn, J.H., Yuan, B., Latorre-Muro, P., Qin, X., Yook, J.-S., Lin, H., Yu, D., Camporez, J.P.G., et al. (2024). Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem. Biol. 31, 1772-1786.e5. https://doi.org/10.1016/j.chembiol.2024.09.001.
17.Flores, V., Spicer, A.B., Sonsalla, M.M., Richardson, N.E., Yu, D., Sheridan, G.E., Trautman, M.E., Babygirija, R., Cheng, E.P., Rojas, J.M., et al. (2023). Regulation of metabolic health by dietary histidine in mice. J. Physiol. 601, 2139–2163. https://doi.org/10.1113/JP283261.
16.Liang, J., Yu, D., Luo, C., Bennett, C., Jedrychowski, M., Gygi, S.P., Widlund, H.R., and Puigserver, P. (2023). Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat. Commun. 14, 3251. https://doi.org/10.1038/s41467-023-38968-7.
15.Green, C.L., Pak, H.H., Richardson, N.E., Flores, V., Yu, D., Tomasiewicz, J.L., Dumas, S.N., Kredell, K., Fan, J.W., Kirsh, C., et al. (2022). Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 34, 209-226.e5. https://doi.org/10.1016/j.cmet.2021.12.018.
14.Zhang, L., Hobeika, C.S., Khabibullin, D., Yu, D., Filippakis, H., Alchoueiry, M., Tang, Y., Lam, H.C., Tsvetkov, P., Georgiou, G., et al. (2022). Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc. Natl. Acad. Sci. U. S. A. 119, e2122840119. https://doi.org/10.1073/pnas.2122840119.
13.Yu, D., Richardson, N.E., Green, C.L., Spicer, A.B., Murphy, M.E., Flores, V., Jang, C., Kasza, I., Nikodemova, M., Wakai, M.H., et al. (2021). The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 33, 905-922.e6. https://doi.org/10.1016/j.cmet.2021.03.025.
12.Richardson, N.E., Konon, E.N., Schuster, H.S., Mitchell, A.T., Boyle, C., Rodgers, A.C., Finke, M., Haider, L.R., Yu, D., Flores, V., et al. (2021). Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat. Aging 1, 73–86. https://doi.org/10.1038/s43587-020-00006-2.
11.Bruckbauer, S.T., Minkoff, B.B., Yu, D., Cryns, V.L., Cox, M.M., and Sussman, M.R. (2020). Ionizing Radiation-induced Proteomic Oxidation in Escherichia coli. Mol. Cell. Proteomics MCP 19, 1375–1395. https://doi.org/10.1074/mcp.RA120.002092.
10.Haws, S.A., Yu, D., Ye, C., Wille, C.K., Nguyen, L.C., Krautkramer, K.A., Tomasiewicz, J.L., Yang, S.E., Miller, B.R., Liu, W.H., et al. (2020). Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol. Cell 78, 210-223.e8. https://doi.org/10.1016/j.molcel.2020.03.004.
9.Pak, H.H., Cummings, N.E., Green, C.L., Brinkman, J.A., Yu, D., Tomasiewicz, J.L., Yang, S.E., Boyle, C., Konon, E.N., Ong, I.M., et al. (2019). The Metabolic Response to a Low Amino Acid Diet is Independent of Diet-Induced Shifts in the Composition of the Gut Microbiome. Sci. Rep. 9, 67. https://doi.org/10.1038/s41598-018-37177-3.
8.Yu, D., Tomasiewicz, J.L., Yang, S.E., Miller, B.R., Wakai, M.H., Sherman, D.S., Cummings, N.E., Baar, E.L., Brinkman, J.A., Syed, F.A., et al. (2019). Calorie-Restriction-Induced Insulin Sensitivity Is Mediated by Adipose mTORC2 and Not Required for Lifespan Extension. Cell Rep. 29, 236-248.e3. https://doi.org/10.1016/j.celrep.2019.08.084.
7.Schreiber, K.H., Arriola Apelo, S.I., Yu, D., Brinkman, J.A., Velarde, M.C., Syed, F.A., Liao, C.-Y., Baar, E.L., Carbajal, K.A., Sherman, D.S., et al. (2019). A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194. https://doi.org/10.1038/s41467-019-11174-0.
6.Yu, D., Yang, S.E., Miller, B.R., Wisinski, J.A., Sherman, D.S., Brinkman, J.A., Tomasiewicz, J.L., Cummings, N.E., Kimple, M.E., Cryns, V.L., et al. (2018). Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 32, 3471–3482. https://doi.org/10.1096/fj.201701211R.
5.Cummings, N.E., Williams, E.M., Kasza, I., Konon, E.N., Schaid, M.D., Schmidt, B.A., Poudel, C., Sherman, D.S., Yu, D., Arriola Apelo, S.I., et al. (2018). Restoration of metabolic health by decreased consumption of branched-chain amino acids. J. Physiol. 596, 623–645. https://doi.org/10.1113/JP275075.
4.Yu, D., Peng, Y., Ayaz-Guner, S., Gregorich, Z.R., and Ge, Y. (2016). Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry. J. Am. Soc. Mass Spectrom. 27, 220–232. https://doi.org/10.1007/s13361-015-1286-8.
3.Chang, Y.-H., Gregorich, Z.R., Chen, A.J., Hwang, L., Guner, H., Yu, D., Zhang, J., and Ge, Y. (2015). New mass-spectrometry-compatible degradable surfactant for tissue proteomics. J. Proteome Res. 14, 1587–1599. https://doi.org/10.1021/pr5012679.
2.Peng, Y., Ayaz-Guner, S., Yu, D., and Ge, Y. (2014). Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin. Appl. 8, 554–568. https://doi.org/10.1002/prca.201400043.
1.Peng, Y., Yu, D., Gregorich, Z., Chen, X., Beyer, A.M., Gutterman, D.D., and Ge, Y. (2013). In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J. Muscle Res. Cell Motil. 34, 199–210. https://doi.org/10.1007/s10974-013-9352-y.